Artificial intelligence as an extension of farm intelligence
Applications in smallholder farmer water management
Promotional adverts about technology in agriculture depict AI as sci-fi made real – Drones target diseased crops for pesticide spraying - high-definition cameras enable Combine harvesters to maximize the grain chopped from each stalk.In reality, when it comes to agriculture, AI is still in training. We are at an early stage where machine learning algorithms are used primarily for multivariate analyses. It will take some time before the information they gather can optimize decision-making in planting, irrigation, inputs application, and harvesting. The volume and quality of training data are missing. For instance, a computer vision-based AI application that detects pests or plant diseases in user-generated photos needs to be trained on a large and diverse dataset of pest images. These images often contain variable lighting, angles, and background colors. Only after it is trained can it find patterns across new images that it might have never seen before and identify pests in a given farm.
Accessing existing farming expertise could lay the foundation for building viable and scalable AI applications for agriculture. By leveraging a network of experts and farmers, the AI model can learn from a broad set of relevant data and images. The output can then supplement a farmer’s knowledge and experience to help them make smarter decisions, such as the right formula and quantity of pesticide to spray at what stage of a pest infestation.
AI can thus be leveraged to deliver targeted, personalized and relevant insights and recommendations to farmers. With this goal in mind, IDH, Wadhwani AI, and Dalberg Design collaborated to identify high-potential opportunities for AI in smallholder agriculture. Water management was prioritized as an area that held considerable promise to benefit smallholder farmers. These approaches are detailed in a recent whitepaper that also explores how they might be brought to the hands of farmers, programs, and policymakers, to make smarter crop decisions and drive a reduction in water usage.
Challenges & Opportunities in Water Management
Through a series of workshops, we hosted with water management experts, we tried to understand the behaviors that influence the farmer decision-making process. These can be summarized as 1) Historical patterns and precedents and community or government-recommended practices; 2) Individual, short-term benefits and profitability. For smallholder farmers, the outlook for profitability is guided by more easily quantifiable drivers (e.g., market prices or labor costs) over those that are harder to quantify (e.g., water or soil conditions). Due to limited resources and lack of appropriate planning tools, farmers prioritize maximizing their short-term, individual benefits over longer-term, collective benefits.The next step was to identify opportunities within water management that showed potential for AI-based interventions:
- Water balance assessment and crop planning
- Managing irrigation schedules
How AI can make a difference
Several attempts have been made to apply AI-based solutions to water assessment. For instance, to forecast the groundwater table in agricultural land and to optimize groundwater utilization and management. Similarly, in irrigation scheduling, agtechs have leveraged sensors and remote sensing, coupled with AI, to bring smarter irrigation decisions to the market. Many of these services are neither scalable nor affordable for farmers. However, there are a few enablers that could change the game.- Demonstrate commercial potential
- Build trust in technology
- Incorporate participatory methods
- Increase access to data
As with any new technology, getting these enablers right will take time and effort. Donors, technology innovators, agribusiness and agricultural programs, and governments all have the role to play in making this happen. We hope the white paper inspires areas where AI can be further honed to help underserved farmers optimize water management.
Authors:
[team index="1"/]
Curious to learn more? Check out the whitepaper here.